2,105 research outputs found

    The impact of using social media data in crime rate calculations: shifting hot spots and changing spatial patterns

    Get PDF
    Crime rate is a statistic used to summarize the risk of criminal events. However, research has shown that choosing the appropriate denominator is non-trivial. Different crime types exhibit different spatial opportunities and so does the population at risk. The residential population is the most commonly used population at risk, but is unlikely to be suitable for crimes that involve mobile populations. In this article, we use "crowd-sourced" data in Leeds, England, to measure the population at risk, considering violent crime. These new data sources have the potential to represent mobile populations at higher spatial and temporal resolutions than other available data. Through the use of two local spatial statistics (Getis-Ord GI* and the Geographical Analysis Machine) and visualization, we show that when the volume of social media messages, as opposed to the residential population, is used as a proxy for the population at risk, criminal event hot spots shift spatially. Specifically, the results indicate a significant shift in the city center, eliminating its hot spot. Consequently, if crime reduction/prevention efforts are based on resident population based crime rates, such efforts may not only be ineffective in reducing criminal event risk, but be a waste of public resources

    Xanthomonas campestris pv. campestris race 1 is the main causal agent of black rot of Brassicas in Southern Mozambique

    Get PDF
    Severe outbreaks of bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) were observed in Brassica production fields of Southern Mozambique. The causal agent of the disease in the Mahotas and Chòkwé districts was identified and characterised. In total, 83 Xanthomonas-like strains were isolated from seed samples and leaves of cabbage and tronchuda cole with typical symptoms of the disease. Forty-six out of the 83 strains were found to be putative Xcc in at least one of the tests used: Classical biochemical assays, enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies, Biolog identification system, polymerase chain reaction (PCR) with specific primers and pathogenicity tests. The ELISA tests were positive for 43 strains. Biolog identified 43 strains as Xanthomonas, but only 32 as Xcc. PCR tests with primers targeting a fragment of the hrpF gene were positive for all 46 strains tested. Three strains were not pathogenic or weakly pathogenic and all other strains caused typical black rot symptoms in brassicas. Race type differentiation tests revealed the Xcc strains from Mozambique as members of race 1. The prevalence of this pathogenic race of the Xcc pathogen in Mozambique should be considered when black rot resistant cultivars are evaluated or introduced into the production regions of this country

    Antihydrogen studies in ALPHA

    Get PDF
    he ALPHA experiment studies antihydrogen as a means to investigate the symmetry of matter and antimatter. Spectroscopic studies of the anti-atom hold the promise of the most precise direct comparisons of matter and antimatter possible. ALPHA was the first to trap antihydrogen in a magnetic trap, allowing the first ever detection of atomic transitions in an anti-atom. More recently, through stochastic heating, we have also been able to put a new limit on the charge neutrality of antihydrogen. ALPHA is currently preparing to perform the first laser-spectroscopy of antihydrogen, hoping to excite the 2s state using a two-photon transition from the 1s state. We discuss the recent results as well as the key developments that led to these successes and discuss how we are preparing to perform the first laser-spectroscopy. We will also discuss plans to use our novel technique for gravitational tests on antihydrogen for a direct measurement of the sign of the gravitational force on antihydrogen

    A high-efficiency spin-resolved phototemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Full text link
    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90{\deg} bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.Comment: 16 pages, 11 figure

    A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    Full text link
    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito Koumoto and Takao Mori, Springer Series in Materials Science Volume 182 (2013
    corecore